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N

The Use of a Beam Space Representation and
Nonlinear Programming in Phase-Only Nulling

1. INTRODUCTION

The considerable recent interest in the use of phase-only control of the ele-
ment weights of array antennas for adaptive nullingl-9 reflects the growth in
importance of both phased arrays and adaptive processing, Phase-only null

synthesis in array antenna patterns is also of current iritpre-stm"18 because it

" can help establish limits to what can be achieved adaptively, and possibly suggest

adaptive procedures,

Phase-only null synthesis presents analytic and computational difficulties not
present when both amplitude and phase of the element weights can be freely per-
turbed. The restriction of the weight perturbations to be of the phases only,
makes the nulling problem nonlinear and not solvable analytically. Approximations
and/or numerical techniques must be used to calculate the phases required to
impose nulls in the pattern. As with nulling with combined phase and amplitude

_.control, the number of imposed nulls is typically considerably less than the avail-

able number of degrees of freedom (one half the number of elements for phase-only
nulling in real antenna patterns) and so additional conditions must be imposed to
define a unique solution. Since in either null synthesis or adaptive nulling it is

{(Received for publication 2 May 1983)
Because of the large number of references cited above, they will not be listed here,

" See References, page 29.




generally desired to preserve the original pattern intact as much as possible
apart from the immediate vicinity of the imposed null locations, a natural condi-
tion to be added to the requirement of nulls at specified locatior - is that the per-~
turbation of the pattern be minimized in a mean square sense. For a linear array
with half-wavelength intereleimnent spacing this is equivalent to requiring that the
sum of the squared absolute values of the weight perturbations be a minimum. A
more general condition requiring minimization of a weighted sum of the squared
absolute weight perturbations can provide additional flexibility in nulling that may
be desirable in certain situations,

In a series of recent reports we have investigated various approachesAto cal-
culating the phases for minimized weight perturbation, phase-only null synthesis,
A straightforward linear apﬁroxlmation method, reasonably effective for small
phase perturbations, is discussed in Reference 13; a method based on iterated
linearization of the phase-only nulling equations is described in Reference 14; a

~ method consisting of obtairing the best phase-only approximation to the combined

phase and amplitude perturbation solution of the nulling problem is reported in
Reference 17; and the use of nonlinear programming techniques to calculate the
phase perturbations is the subject of Reference 18, Of these methods the nonlinear
progr:u:..ming approach is the most general and effective, In this report ﬁ-e de-
scribe a variation of the nonlinear programming method based on the work of
Baird and Rassweiler, '

In their basic paper on phase-only nulling, 1 Baird and Rassweiler considered
the problem of minimizing the mean square difference between a desired signal
and the output of a linear array by varying the phases only of the array elements,
The amplitudes of the element weights were assumed equal to unity. The sources
of the signal and the interferences were modeled as discrete, single-frequency
directional emitters. The vector of optimal phases was shown to be expressible
as the phase of a linear combination of the complex conjugates of the vectors
giving the signal and interferences as received at the elements of the array. This
representation was referred to as the "beam space decomposition,” and the
coeflicients of the vectors as "beam space coelficients" or "beam coefficients,"

The purpose of this report is to apply the analytic method of Baird and
Rassweiler to the problem of imposing nulls in the pattern of a linear array of
elements by varying the phases only of the element weights, subject to the condi-
tion that the perturbations of the weights be minimized in a weighted least-squares
sense. In Section 2 we obtain a representation of the desired phases similar to
that of Baird and Rassweiler, but slightly more general in that the solution allows
for an arbitrary amplitude taper of the element weights, and for any choice of the
coefficients entering into the weighted sum of the squared weight perturbations.
When the phase perturbations are small the perturbed pattern can be interpreted




as the original pattern plus a sum of cancellation beams directed towards the
imposed n*1l locations . 1d the locations symmetric with respect to the mainbeam.
The major contribution of this report to the literature on phase-only nulling is
contained in Section 3, in which it is shown that a highly efficient method of cal-
cuiating the phase perturbations for minimized weight perturbation null synthesis
is to use nonlinear programming computer algorithms to calculate the coefficients
in the beam space representation of the phase perturbations. The use of the beam
space representation enables the number of unknowns to be reduced from half the
number of elements to the number of imposed null locations., Section 4 of the
report contains a briel discussion of the use of the beam space representation in

adaptive phase-oniy nulling.

2. ANALYSIS

We consider a linear array of N equispaced isbtropic elements (Figure 1)

whose field pattern is given by

In Iq. (1) the {an}‘-aro the complex element weights,

S N-1 _h-1) - - ' =
d, = 5 (n-1) = dN-n+1 , n=12 ..., N , (2)
and
2 .
- £T 4 )
u Y sin .
where

n

A wavelength,
d = interelement spacing, and
A = angle measured from broadside to the array.

The phase reference is taken to be the center of the array. Let ¢n' n=1 2, ...,
N, be the set of perturbations that (a) i‘nposes nulls in the pattern at the locations

u =y, k=1, 2 ..., K:
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Figure 1. Geometry of Array
N . . :
jé, idju
Z ae e "Kio | k:1,2 .., K, 3)

n=1

and (b) minimizes the weighted sum of the squares of the absolute values of the
element weight perturbations

N
F‘-ch

n=1

_ 2
an(.«‘w'fa)' . ' (4)

. . ;
The weighting coefficients {cn} in Eq. (4) are assumed real and positive, ‘

The method we employ to derive a beam space representation for the phase
perturbations is that of Baird a' 1 Rasswoilor‘.l We let

and make the null constraints purely real by multiplying the left-hand side of
Eq. (3) by its complex conjugate. The null constraints then become

N N L
-jid__ -d Ju
Z Ea:'nanw;‘whe m n k=0 , k-=1,2 ..., K . (6)

*The choice ¢y = 1 for all n makes F the sum of the squares of the absolute
values of the weight perturbations. For half-wavelength spacing of the array ele-
ments, this is equivalent to minimizing the mean square pattern perturbation for
0 from -x/2 to #/2. Other choices of the ¢y with practical application to null
synthesis are also possible; 13, 15 for example, c, = l/]anlz.




while

al 2

- 2 - 1!

F - E cplapl“lw, -1l

n=1
N .

= E cnlanlz(Z - 2Re[w ) . 7
n=1 .

Since the {¢} arr assumed to be real phase perturbations, the {wn) by Eq. (5)
have unit modulus. This is expressed by an additional set of N constraints

K N
L P2 Gt 2 A0,
k=1 n-1

where from Eys. (6) and (8) respectivel)",

N N .
-j(d_ -d Ju
B * m n K % =
Cy - EZamane weVn k=12, ..., K,
m=1 n=1
and
Dn=w:wn-l , n=12 ..., N . ) (9).

The {pk} and [ln} are (real) Lagrangiar multiplicrs, A necessary condition for
F to have a stationary point is that the gradiem’.l of the Lagrangian with respect to

w =[wl, Wos aae, wN]Tbe zero:

*The gradient with respect to a complex vector z is dt‘finedzo to be

vg : vRo[_z_] +jvlm[£] *
19. Fletcher, R. (1981) Practical Methods of Optimization; Vol. 2, Constrained
Optimization, John Wiley & Sons, New York, Ch, 9. )

20. Morse, P.M., and Feshback, H. (1953) Methods of Theoretical Physics,
Part 1, McGraw-Hill, N.Y., p. 351.
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-

K K .
va=vwF+vauka+vaknDn=o . {10)
- = k=1 ~ n=1 ' :

Now from Eq. (7)

u

v, F = -29, Re(ﬁrg)

-2 EGHY)

where we have let a denote the vector

]T

|2n coe _CN|5N‘2J . (12)

e- [“1'%'2' L2"“2

The null constiaint tunctions, {Ckl, are Hermitian quadratic forms and can be

written as
Cy = ﬁfﬂk‘_"
= !”.T !k}'.l x .
where
. . T
-jd,u =-jd “
- * 17k * Nk =
i [ale ,...,gNe 1 k=12, ..., K . (13)

The clements of the Hermitian matrix Rk are
x -ild_-d Ju
| ={R,} _ 19 ™ %0 % _
"kmn k sanpa e , mn=12 ..., N .

.

Letting R be the Hermitian matrix

K
L Z"‘kﬁk
k-1

K
v, VT
B ¥ul -

k=1

ic

I ]




then gives

« 2Rw (14)

by using the mrmula21 for the complex gradient of a Hermitian quadratic form,

Finally,
N .
Y Z A Dy = 2wy e AWyl
n-1
< 2AW . as)
where ’
My @ |
A- 2. . (16)
Q XN |
i
Substituting kgs. {11), (14), and (15), in Eq. (10) we obtain
-2 +2Rw +2Aw = o |
)
‘ i
or : |
?
(B+Mw-a . s
|
and hence :I
an

PR RV UL

~ Equatfons (6), (8), and (17) form a system of 2N + K equations for the 2N + K
unknowns (wn\, (Xn}, and l“k}' Since thr constraints, Eq. (8), specifying the use
of phase-anly weight control are nonlinear, the system of equations can be solved

21, Hudson, J. E. (1981) Adaptive Array Principles, Institution of Electrical
Engineers, London, p. 245.
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only by the use of numerical techniques, such as nonlinear programming. How-
ever, Eq. (17) can be usrc_l to derive a convenient representation of the phase
perturbations. Following Baird and Rassweiler we define a sequence of matrices

Bty

m .
* 1 .
gm L"Z“k!k!k ., m=12 ..., K ,
k=1
B, -A .
with the vectors Y defined by Eq. (13). Using the matrix inversion formula, 22
-t AThzata!
ia+zzh - At ===
1+27a™z
we see that the _!_3m satisfy the backwards recursion relation
-1 t -1
-1  n-1 “ml-am xvm!m Bm-l
B = = - (18)
-m -m-1 1+ 1 B”
} “m-m-m 1¥m
1, -1 .
Eo : ll . (19)
Since

from Eq. (17)

» - Bla
o . 4, B, -1 v va
. | g? K=K-1¥K ¥k = K-x
=K-1 1+ 1 =T A
PrIk=K-1¥K |

22, Householder, A.S. (1964) The Theory of Matrlcos in Numerical Analysis,
Blaisdell, N.Y., p. 123

12




. gl -
T Bgarg k%)
where K is the scalar

t !
Bg Y B2
¥ -l *
1 +“KVIEEK-IVK .

K
We now repeat the process, using Eq. (18) and letting

Ka *2 " k¥
so that

-1
* : Briatka

: wl . o g-d

-1 MK-1Bg-2¥k-1¥k-1Bk-2
Bk-2° 75 vi B v

HK-1IK-15K-2-K-1

ka

o H -1 -
By-2(dk-1 " TK-1¥K-1)

-1
Bg-2(2 - YR ¥k " TK-1%K-1)

where
1
L Mk-1¥k-1Bxo2 ka
K-1 1+ vi B2 )
BR-1IK-12K-2ZK-1

Continuing the proc~ , and using Eq. (19) at the end, we obtain
K

w At a - E " | - (20)
k=1 '

13

B o s A R Rl B GRS 2 B M A B O

. y N - L . .l . .t et e
Y i i . A PP . " ” cidiebad PRI L N £ .

[~ [




- and the total phase dependence of the element weights {a then

where

+
v, Bt
. —k=k=k-1k k=1, 2, ..., K,

Y = ’
T RS

and

(K _
a2 D my . k=l 2. K1,

< m=k+1

&_—-

k=K .

In

In component furm, Eq., (20) is, referring to Eqs. (5), (16), (12), and (13),
-jd_u
_ 1 ' |2 * i n k
e = c_|a - v, a_e , n=12 ..., N .
Xn n'“n Z k “n"

Expressing the unperturbed element weights {a } in the magnitude~-and-phase
form a la | exp Gy '

' K
i ~jv ~jd u
e g {calagl? - lagl e 7R e,
k=

K
lal o =jv -jd_u
==l lc la ] -e nz—ye nk , n=1,2 ..., N, (21)
* a2l k=1 * : ’

Watvg) lal ~jd_u | ,
e "0 ka kKl L nst 2, ..., N . (22

14




Assuming that the Lagrangian mu.tipliera (7« } of the constraint functions [D } of
Eq. (9) are all positive, the factor | E I/l in Eqs. (21) and (22) has no errect on
the phases, Hence, the phase perturbatlons are given by

. K
‘]" -jd u

¢, = phase cnlanl e M E 7y © n k , n=12 ..., N, ‘ (23)
k=1

and the total phases of the element weights by

: “jdpuy '
ép * Uy = phase °n’n'2 € , n=12 ..., N ., (24
k=1

For the special case that Ianl
of Baird and Rassweiler (see Appendix B).
The coelficients (-yk) in Eqs. 123) and (24) are in general complex. However

in the important special case that (a) the unperturbed pattern is real, and hence
that the unperturbed element weights are conjugate symnietrk_-,

= 1, Eq. (24) reduces to the form of Eq. (9)

LINSRTRELE B n=12 ..., N ;

and (b) the welghting coeffictents [cn} are chosen to be even symmetric,
CNentl1 “Cp » N=L, 2, ..., N

it has been shown3 that the phase perturbations are odd-symmetric:

$Nen+1 = "% + B=1 2, ., N . (25)
Since the {dn} in Eq. (23) are odd-symmetric by Eq. (2), fot Eq. (25) to hold it
is then necessary that the coelficients {7} be real, ‘

Equation (23) does not provide an explicit solution for the phase perturbations
since the coeflficients hki are defined ir terms of the unlmowh Lagrangian multi~
pliers (uk}. Nevertheless, the form of the phase perturbations is useful because
(a) it makes possible an interpretation of phase-only nulling in% terms of cancella~
tion beams; (b) it can serve as the basis of a numerical method for calculating the

23. Shore, R.A. (1983) A Proof of the Odd-Symmetry of the PLaes for Minimum
Weight Perturbation, ase-Only Null Synthesis, RADC4TR-83-96,
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phase perturbations for null synthesis with the number of unknowns ejual to the
nuraber of imposed nuils, K, rather than the number of elements in the array, N;
and (c) it can be incorporated into adaptive algorithms for phase-only nulling.
The appiication of Eq. (23) to null synthesis is the central concern of this report
and is treated in Section 3., The use of Eq. (23) in adaptive nulling is briefly
discussed in Section 4. A beam space interpretation of phase-only nulling has
been given by Baird and Rassweiler, and also in Reference 13, For completenecs,
however, we give it briefly here as well, in a slightly more general form.

Assume that the coelficients {-yk) are real and that the unperturbed phases,

[u’/n}, are of the form

so that the main beam of the unperturbed pattern is directed towards u = u.. We

rewrite Eq. (23) as

K .
=jd (v, -u )
é_ - phase cnlanl - Z g ©
k=1

K
Z 7y Sin [dn(uk - ns)]
tan~! = ., mn=12 ..., N, (26)

\
cnlanl - Z i cos[dn(uk - us)]
k=1

£
[
-

n

and assume that the phase perturbations are small so that ¢, can be aporoximateud

by

K
z: 7y Sin [dn(uk - uy)]
k=1
K

o = N n=1, 2, ees, N M 27

n .

cnlanl - Z 7y cos [dn(uk - us)l
k=1

and the weight perturbations,

Awn=an(ej¢n-1) , n=12 ,.,, N,

16
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aﬁproximatecl by
awp ™ japd,

“idug <
je Z 7 8in (d (v, -u))]

R
1
€y Z vy cos Idn(“k - “s)l‘

K jdtu -2u)  -jd u
Z Tle "€

_;_ k=1 - : , n=12 ..., N . (28)

1
n "] Z 7y €08 [d (u, = u.)]

]
=_. -
=

[}
—

The cancellation pattern
N jd_u
Aplu) = E Aw e
n=1

is then approximated by

K N f 34_[u-(2 N el
1 1 p[u-ug-up) Jdptu=uy,
Ap(u)tfg 7"“2:;6; - - ¢ . 29)
where
K
c;‘ e e, - 1 Z 7y €08 [d“(uk - \ls)l . - {(30)
lan, k-1

and so is the sum of K pairs of beams, one member of ~ach pair direcied towards
an imposed null location, u = U, and the other member, of opposite sign, directed
towards the symmetric location with respect to the direction of the unperturbed

main beam,

17
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u-= -uk+ 2“3 =uk-3(uk-us) .

The shape of the cancellation beams is determined by the {c;l}. For c, = 1,

n=1, 2, ..., N, and the magnitude of the beam coeflicients small compared

with the {lanl }, the beams are of the form sin (—Nzﬂ)/sin (-‘;—). that is, beams

corresponding to an array ol N elements with uniform amplitude, For other

choices of the {cn} the cancellation beams correspond to arrays with tapered

amplitude distributions. Further details may be found in References 13 and 15.
Although the interpretation of the phase-only nulling cancellation pattern as

a sum of beam pairs is based, as we have seén, on the assumption of small phase

perturbations, we shall for convenience in this report refer in general to Egs. (23)

and (26) as "beam space' representations of phase-only weight perturbations, and

to the {-yk} as "beam coefficients," It should be kept in hind, however, that strictly

speaking the beam space interpretation applies only to phase perturbations small

enough for the approximations, Eqs. (27) and (28), to be acceptable, say

I‘nl < 0.5 (rad). It should also be noted that the beam space representation,

(29), of the cancellation pattern is in general a nonlinear superposition of

beams because the beam coefficients, {-yk}, enter into the expréssion, Eq. (30),

for the {c;'}. Only if the beam coefficients are negligibly small compared to the

{cnlanl } does the representation, (29), become a linear superposition of

beams.

3. NUMERICAL CALCULATION OF PHASE-ONLY WEIGHT .
PERTURBATIONS FOR NULL SYNTHESIS

The beam space representation, (26), obtained in the previous section for
the phase perturbations for minimized weight perturbation null synthesis, can be
used as the basie of a highly efficient mefhod for numerically calculating the phase
perturbations. To calculate the beam coefficients, {-yk}, in {(26) we use com-
puter algorithms that have been developed for solving the so-called nonlinear
programming problem « the problem of minimizing or maximizing a nonlinear
function of several variables subject to a set of nonlinear equality and/or incquality
constraints, Here, the nonlinear function we wish to minimize is given by Eq. (7},
which we rewrite in the form

18




N
2
F =2 Z cnlanl (1-cos¢)
n=1

N ¢
4 Z cnlan|2 sinz (-—i-"—) 3D
n=1 '

and the nonlinear equality constraints are, from Eq. (3) a:.d the odd-symmetry ol
the {d } and the {énl, .

N
E, 8 Z Ianl cos [¢ +dtu -u)j =0 , k=1,2,..,K . 32)
n=1

In Reference 18 we investigated the solution of ithis ron inear programming
problem when the “n} are the unknowns. The pergc;rmance on th;s5 problem of
the two nonlinear programming algorithms LPNLP®" and VMCON®" was compared,
Here we assume the form of (26) for the phase perturbations with the K beam
coeflicients hk’ as the unknown variables. In applications to null synthesis with
large arrays and the number of imposed nulls,” K, small relative to the number of
independent phases, N/2, this approach has the obvious merit of reducing the
number of degrees of freedom from N/2 to K. Since many nonlinear programming
algorithms, including LPNLP and VMCON, require explicit expressions for the
derivatives of the objective function and of the constraint functions wita respect to
the unknowns (some algorithms compute these derivatives via discrete difference
approximations), we give expressions for the derivatives of F and the {E, } with
respect to the (-vk} in Appendix A. :

To investigate the relative performance of the two approaches, beam space
and "phase space,” to calculate the phase-only weight perturbations, the beam
coeffictent method was used to calculate the phases for the same null synthesis
problems as were used in the study described in Reference 18, The first problem
was that of imposing nulls in the pattern of a 417element array with uniform am-

plitude and half-wavelength interelement spacing. The amplitudes of the elements

24. Pierre, D.A., and Lowe, M.J. (1875) Mathematical Programming Via
Augmented Lagrangians, Addison-Wesley, Mass.

25, Crane, R.L, et al (1930) Solution of the General Nonlinear Programmin
Problems With Subroutine VMCON, Report ANL-80-64, Argonne National

Laboratory, Argonne, 1ll.
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and the weighting coelficients {on} were set equal to unity, and the direction of
the unperturbed main beam, u,, was taken to be zero (that is, broadside to the
array). A series of sets of imposed null locations was used starting with one null
at 4.0°, then two nulls at 4.0% and 4. 6°, up through five nulls at 4.0°. 4.6°, 5.2°,
5. 80, and 6.4°. Both LPNLP and VMCON were run in double precision.on a

CDC 6600 computer, In running LPNLP the modified Davidon-Fletcher -Powell
(DFP) conjugate gradient mode (ISS = 0) was used without automatic reset to the
gradient direction (IRESET = 0), The convergence parameters were set at

€y = 1.0 X 10-10, €y TFy - 1.0 X 10'8. In running VMCON, the tolerance was
set at 1,0 X 10-10. Both programs were run with the unknown beam coefficients
set initially to zero. : '

In Table 1 we compare null depths and computation times obtained for this
test problem with LPNLP and VMCON for beam-sp'ace and phase-space nulling.
The phase-space nulling results are taken directly from Reference 18, The most
striking result is the remarkable improvement in computation time obtained with
beam -space nulling as compared with phase-space nulling. This improvement is
especially impressive when VMCON was used as the nonlinear programniing
algori’hm; for the one-, two=-, and three-null cases, computation time decreased
by a factor of more than 50, while for the four-null case the computation time was
reduced by a factor of 15, Smaller yet considerable decreases in computation
time were obtained when LPNLP was used as the algorithm, Null depths obtained
with the two methods are comparable, When convergence to a solution occurred,
the beam space method always gave the same phases as the phase space method
to witliin very small differences. The five-null case could not be solved when the
beam space method was used. '

To help understand the failure of the beam space method in the five-null case,
in Tablie 2 we have tabulated the beam coefficients and the average absolute phase
perturbation-as a function of the number of imposed nulls. The beam coefficients
are taﬁulated in increasing order of the imposed null locations towards which the
respec:tive cancellation beams are directed, The average of the magnitudes of
the beam coefficients increases by a factor of more than 70 and the average
absolute phase perturbation doubles from the one-null to the four-null case. As

_discussed in Reference 18, this test problem was intentionally chosen to be a

difficult one, requiring nulls to be imposed at closely-spaced locations in anear-in
sidelobe region of a uniform array. Viewed intuitively in terms of a picture of
cancellation beams, the magnitudes of the beam coefficients increase strongly
with the number of nulls in such a nulling situation because the main lobes of the
cancellation beams interfere with each other, thus requiring extensive mutual
adjustment of the magnitudes of the beams for nulling to occur, This interference
is especially evidenced by the four-null case in Table 2 in which not only are
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Table 2. Values of the Beam Coelficients and the Average Abso-
lute Phase Perturbation for Beam Space Phase-COnly Nulling in
the Pattern of a 41-Element Uniform Amplitude Array With /2
Spasing. Nullc? imposed at the series of locations 4.0, 4.6,
5.2, and 5.8 using LPNLP and VMCON

Average Absolute
Number of Beam Phase Perturbation

Nulls Coefficients (rad)

1 -0.4 . 0.28

2 -0.9 - 0.31
+0.5

3 +1.8 0.33
: -4,3
+2,6

4 +15.6 0.54
-42.9
+42.0
-14.9

v the magnitudes of the beams all much larger than that required to impose a single

null at the respective locations, * but in which the beam coefficients alternate in
sign despite the fact that the original 'pattvm is negative at the locations 4. Oo, 4. 6°,
and. 5. 2°, and is positiw; only at 5, 8°. The increase in the magnitude of the beam
coefficients with the number of closely- spaced nulls is clearly associated with an
increase in numerical difficulty as shown by the increase in computation time,
especially pronounced in going from the three- to the four-null case. The numer-
ical difficulty can be attributed in part to the fact that increasingly large changes
in the beam coefficients are required to bring about small charges in the objective
and constraint functions, However, even when the phases are taken to be the
unknowns, the five-null cases in this series of imposed nulls presents formidablc
difficulty as can be seen in Table 1 from the fact that only LPNLP converged
to a solution and required an inordinately large amount of computation time.
Further work is needed to develop methods for handling such difficult phase-only
nulling situations,

The second test problem used to compare the beam-space and phase-space
nulling methods was that of imposing nulls in the same pattern of an array with
41 eclements, half-wavelength spacing, and uniform amplitude, at the series of

*
If a single null is imposed at each of the locations 4.0°, 4,6°, 5.2, and 5. 8°,
the value of the beam coefficient is respectively -0, 41, -0.31, -0,14, and +0,07.
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sets of locations 25%; 25° and 35% and so on up through a set of five imposed nulls
at 25°, 350. 45°, 55°, and 65°, This test problem, in contrast to the first problem,
was chosen to be relatively easy, requiring nulls to be imposed at wide~spaced
locations in the lower sidelobe region of the pattern. In Tatles 3 and 4 we have
tabulated the same quantities for this test problem as in Tables 1 and 2, respec-
tively. Again the phase space results are taken directly from Reference 18. As
was noted for Table 1, the salient feature of Table 3 is the remarkable reduction
in computation time made possible by employing the beam-space nulling method,
especially when VMCCN is ased as the nonlinear programming algorithm, Even
the five-null case was solved by VMCON using the beam space method in about
half the shortest time required to solve the one-null case when the phase space
method was usrd. Examining the beam coefficients in Table 4, it is seen that
there is relatively little change in their values as nulls are added; the coefficient
as3ociated with the 25° beam varies between 0,067 and 0,065, the beam coefficient
associated with the 35° beam varies between ~0, 039 and -0. 040, and so on. Again
viewed intuifively in terms of a picture of cancellation beams, in this test exam-
ple the beams are coupled only through their sidelobes instead of through their
main beams as in the first test problem, Hence, the cancellaticn beams are
much more independent of each other and the beam coefficients for the multiple
imposed null cases are very close to the values they have when only a single null
is imposed at each of the respective locations (+0, 067, -0,04z, +0,055, +0,029,
and +0. 046 for a single imposed null at 25°, 35%, 45%, 55%, and 65°, respectively),
fot Because of the relative independence of the cancellation beams, little mutual
adjustment of the beams is required for nulling and the numerical difficulty of the
. . problem increases only slightly as additional nulls are imposed,
N It may be of interest to note that the values of the beam coefficients for the
Ay second test problem can be estimated rather closely from a simplified form of
the approximation, (29), for the cancellation pattern, In this example the
wefighting coefficients {cn} and the ampligudes of the element weights {lanl ! are
. equal to unity, the unperturbed mzin beam direction, u_, equals zero, and N, the
N, number of array clements, is 41, Assuming that the {T-yk[ } are small relative
to one, we can approximate the {c;‘} in Eq. (30) by ¢, = 1. At the imposed null
locations u = u, k=1, 2 ..., K, the cancellation pattern, Ap(u), can then ke
approximated by ‘

N

T Tk ¢ k=12, ..., K ,

A aplu) = -

if we neglect the contributions to the cancellation pattern at u = U of the bparﬁs
directed towards the other imposed null locations and towards the locations
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Table 4. Values of the Beam Coefficients and the Average Abso-
lute Phase Perturbation for Beam Space Phase-Only Nulling in
the Pattern of a 41-FElement Uniform Amplitude Arrag With A/2

Spgcing. Nylls imposed at the series of locations 259, 359, 450,
557, and 65° using LLPNLP and VMCON
i ) . Average Absolute
Number of Beam Phase Perturbation
Nulls Coefficients (rad)

1 +0. 067 0.044

2 +0, 064 : 0.044
: -0.039

3 40,066 0.053
-0, 040
+0.054

4 _ 40.065 0.054
-0. 040
+0, 052
+0,018

5 +0.065 . - 0.063
-0, 039
+0,052
+0.020
+0. 046

symmetric with respect to the main beam of the imposed null locations. Since by
definition the cancellation pattern equals the negative of the value of the unper-
turbed pattern at the imposed null locatlohs,

Ap(uk) = -po(uk) , k=12 ..., K , . (33)

it follows that

T B . k=12 LK . 30

Since the value of the unperturbed pattern at the locations 25°, 35_0, 45°, 55°, and
652 is 1. 41, -0,88, 1,12, 0,63, and 0. 98, respectively, we obtain from the ap-
proximation, (34), as estimates of the beam coefficients 0,069, -0,043, 0,054,
0.031, and 0.048. These values are quite close to the calculated values given in
Table 4, More accura’~ estinates can be obtained from the approximation,

(29), by replacing the {c;’} by €, a8 above but not neglecting the contributions
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of any of the cancellation beams, Equation (33) then yields a system of K simul-
taneous linear equations that can be sclved for the beam coefficients.

4. ADAPTIVE PHASE-ONLY NULLING

The application to adaptive phase-only nulling of the beam space representa-
tion of the phase porfurbaﬁons has been discussed in detail by Baird and
Rassweiler, 1 and we will here touch only briefly on this topic.

In the previous section we showed that computation efficiency for minimized
weight perturbatton, phase-only null synthesis in purely real patterns could be '
significantly increased by using a beam space representation of the phase per-
turbations, thereby reducing the number of unknowns from N/2 (N the number of
elements) to K, the number of imposed nulls.. The beam coefficients were deter-
mined using nonlinear programming algorithms supplied with values of the
objective function, the constraint functions, and their dertvatives with respect to
the beam ccefficients. In adaptive nulling with realistic arrays, the pattern can no
longer be assumed real and, consequently, the beam coefficients hk} in the beam
space representation, Eq. (23), must be regarded as complex constants,

Equation (23) can be used to reduce the number of unknowns from N to 2K pro-
vided that the directions {u, } of the sources of interference are known with
sufficient accuracy, ) )

In adaptive nulling it is also often the case that the only information available
to the adaptive algorithm (other than that of the directions of signal and jammers)
is that of the total output power of the array. The beam coeflicients must then be
determined by random search or gradient methods that attempt to reduce the
total output power to a minimum. One danger of such algorithms {s that the de-
sired signal will be nulled out in the course of reducing the total output power,
Constrained gradient methods such as that developed by l‘-‘rosc26 are not helpful
in phasc-only adaptive nulling since they require adjustmen:s of the slement
amplitudes as well as the phases, One distinct advantage of using the beam space
representation for phase-only adaptive nulling, as compared with adapting with
the phases themselves as the control variables, is that {n certain situations (inter-
ference sources spaced not too closely in a low sidelobe region of an antenna
pattern) the beam coefficients are small in magnitude and the cancellation pattern
then consists of beams with complex coefficients directed at the interference
sources and at the locations symmetric with respect to the main beam. These
cancellation beams can have only a small elfect on the mafn beam and so the

26, Frost, O.L. (1971) An algorithm for linearly constrained adaptive array
processing, Proc. IEEE 60:661~675,
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response of the antenna to the desired signal is not likely to be significantly de-
graded as a result of the adaptive adjustment of the phases. The choice of the
weighting coeffic'ents {c,} in Eq. (23) can be used to cortrol the shape of the
cancellation beams, If c_ = 1 for all elements, the cancellation beams are of the

form sin (%)/ain (%) corresponding to a uniform amplitude array., Other

choices of the {cn} can be used to obtain cancellation beams with broader main
beams and lower sidelobes., These may be desirable in certain applications.
Further details may be found in Reference 13, For closely-spaced jammers the
beam space method is likely to present considerable difficulties in adaptive null-
ing because the beam coeflicients are then large, and instabilities can easily arise
from the kind of phenomena noted in the previous section in regard to the [irst test

problem,

8. CONCLUSIONS

In this report we have described a new computational method for minimized
weight perturbation, phase-only null synthesis in linear array antenna patterns,
consisting of the use of nonlincar programming computer algorithms to calculate
the coefficients of a beam space representation of the optimal phase perturbations,
The beam space representation enables the number of unknowns to be reduced from
half the number of array elements to the number of imposed null locations., The
derivatives of the objective and null constraint functions with respect to the beam
coefficients, utilized by the nonlinear programming algorithms, are calculated
from analytic expressions, Computation time is significantly reduced in general
by this method, compared with that required to calculate the phase perturbations
directly with nonlinear programming techniques,
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Appendix A

Calculation of the Derivatives of the Objective Function and
Constraint Functions With Respect to Beam Coefficients

In this appendix we obtzin expressions for the derivatives with respect to the
beam coefficients {-yk} of the objective function F given by Eq. (31) and the con-
straint functions {Ek} given by Eq. (32).

From Ekq. (31)

N
é ¢ 3¢
oF 2 . 1
Fon 4 E cn|an| [2 sin (Tn) cos (_zr_x_) -2-] -éjy—"-
P n=1 P

N
z: 2 . a'tn

2 cnlan| sin ¢n_a7— . p=12, ..., K, (Al)
n=1 p

and from Eq. (32)

N .
oK, Z E, 38
oY, 3¢ oy
p n=1 n p
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N

n=1

o¢
To calculate 3 % from Eq. (26), we let
"p

K .
. Z 7y 8in {d (u - u))]
_ k=1 :
yn = K »
cnlanl - Z 7y €08 [dn(nk =u)]
k=

1

so that

and
Y, * tan én .
Then,

aén_“n ayn
v, Iy, vt

From Eqs, (A4) and (AS)

nd WS U GNP 8
dyn 14-)?;r 1+tan2¢n n

and from Eq. (A3)

ayn _ 1 tn
Wp = Tn. sin [dn(up - us)] + -;z-cos [cln(up - “s”
n
32
A A e b A e et SO e -

A [, P Y I
—~ : / '
N . i

3%, ,
la| stn ¢, + dn(uk-us)]-a-‘y-; , p=12 ..., K .

(A2)

(A3)

(A4)

(As)

(A6)

(A8)
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T

where

K ,
\ s c'n]an] - Z ) €08 ldn(uk - \ls)]
k=1

and

K
t, 4 Z 7y sin (dn(uk ~u)] .
k=1 :

Substituting Eqs. (A4) and (A8) in Eq, (A6) we obtain

2
a¢n cos ¢n } tn )
-5;;- = o t sfn [dn(up ~ug)l + -;“—- cos [cln(up - “s)]‘ . (A9).

The derivatives of the objective function and constraint functions are then given,

¢ n

respectively, by Eqs. (A1) and (A2) with o
p

obtained from Eq. (A9).
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Appendix B

Comparison of the Minimized Weight Perturbation Obyectlve
Function With the Objective Function Used by Baird
and Rassweiler

Bl treat the problem of

As noted in the introduction, Baird and Rassweiler
minimizing, by phase-only control, the mean square error between a desired sig-
nal and the array output, given discrete sinusoidal sources of signal and interfer-
ences. In the special case that the interferences are infinite in power, the mean
square error can be minimized only by placing pattern nulls in the direction of the
interference. The mean square difference between desired signal and array out-
put is then simply lp(us) - po(us)lz, where po(us) and p(us) are the values of the
original and perturbed pattern, respectively, at u = ug, the direction of the desired
signal. For the main beam of the original pattern to.be directed towards u = ug,
the unperturbed weights are of the form a, = Ianl e.Jdnus and

. 2
- N . . N .
j¢, jd u jd u

lp(us)-po(us)lz = E a e e 'S -Z— a e n's
n=1 =1
N . 2

ié
|l (&l e

n=1

B1l. Baird, C.A., and Rassweiler, G.G, (1976) Adaptive sidelobe nulling using
digitally controlled phase-shifters, IEEE Trans. Antennas Propag.
AP-24:638-649.
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where the {¢ n} are the phase perturbations. This objective function differs in
. general from the minimized weight perturbation objective function we employ

[Eq. (4)],
N . 2
i
F = Z cnlanl2 e n-ll
n=1
= 2 Z cnlan,|2 (1 - cos én) . . (B2)
n=1 :

even when ey = 'Ianl ='1, n=1, ..., N, the case treated by Baird and Rassweiler.
Only if the additional restriction of the phase perturbations to be odd-symmetric
is made do the two objective functions become equivalent, since then

N 2
Z {cos o - 1)
n=1

“ '::'r""/ : i (éj¢n - 1) 2

n=1

L ] (_r;)z |
2 ¢ :

Even though the iimitlng form, [for irnfinite power interferences, of the objec~
tive function employed by Baird and Rassweiler, Eq. (Bl), dilfers from the ]
mirimized weight perturbation objective function, Eq. (B2), the two objective |
functions lead to the same form of beam space representation for the phase per- (
turbations when e, = Ian| = 1, as we have noted in Section 2 regarding Eq. (24). f
To understand why this is so, we briefly trace through the derivation of Eq. (24), !

using Eq. (Bl) as the objective function, Starting with Eq. (10), the equation re-
quiring the Lagrangiah to have a zero gradient, it is seen that if the objective
function, Eq. (Bl), is used instead of F, all terms on the right-hand side of

Eq. (10) remain the same except for vV, F. which is replaced by V4G» where

—

G2 ZN [‘.“n| (e“" - 1)] 2 '

H n=1

~\‘-~...
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N N
Z Z I m' Ianl(w:n - 1"‘"n -1)
- n:

m=1

using Eq. (5). To calculate va we let

where Pis the symmetric matrix

T
P=8g
with
8 =[|a1| N EV P |aN|]T .
- Then
WG T %'
= = 22!'
-1,

1}

N
L
15

using the formula for the complex gradlent of a Hermitian quadratic form as in
obtaining Eq. (14).. Equation (17) is then replaced by

[ : w=(P+R+AlPD .
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The recursive matrix inversion procedure used tc obtain Eq. (20) now gives

K
AT LIED DU A
k=1

where the {\_rk} are given by Eq. (13) and the {v}} are scalar coefficients. Since

? / " it follows that

where

vk

. 1'&: , k=1,2, ..., K .

§ o Ty.
= B Ll-v

Hence, just as Eq. (23) is obtained from Egq. (20),. the phase perturbations are

given by
K
- : jdu ‘jd“
¢, = phase- Ian' -e 08 Ianlz: 1'|"e n"k
* k=1
K
jd_u -jd_u
s phase [i-e "‘E Yye PFl , ne12 .., N,
k=1

and the total phases of the element weights by

K
-jd_u -jd_u
‘n-dnu‘:ma.e e n'- E tr;e n ok R ﬂsl, 2,}..., N . (B3)
k=1




Note that the amplitudes of the woights‘do not appear explicitly in these expres-
sions for the phase perturbations and total phases as they do in Eqs. (23) and (24).
The values of the coefficients {y"} do, however, depend on the weight amplitudes.
Comparing Eq. (B3) with Eq. (24), equating ¢, with -d u_, it is seen that for

e, = Ianl = 1, the two solutiuns are identical in form. Thus, the minimized sig-
nal perturbation objective function, Eq. (B1), and the minimized weight perturba-
tion objective function, Eq. (B2), lead to the same forin of representation for the

phase perturbations when ch Ianl =1,
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